Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2307963, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602451

RESUMO

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.

2.
Nat Cancer ; 4(9): 1326-1344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640930

RESUMO

The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.


Assuntos
Pancreatopatias , Neoplasias Pancreáticas , Humanos , Gencitabina , Proteína-Lisina 6-Oxidase , Neoplasias Pancreáticas/tratamento farmacológico
3.
Cancer Res ; 81(13): 3461-3479, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33980655

RESUMO

Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.


Assuntos
Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/prevenção & controle , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pancreáticas/prevenção & controle , Microambiente Tumoral , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/imunologia , Animais , Apoptose , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
4.
Cancers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513979

RESUMO

The lysyl oxidase (LOX) family of enzymes are a major driver in the biogenesis of desmoplastic matrix at the primary tumour and secondary metastatic sites. With the increasing interest in and development of anti-stromal therapies aimed at improving clinical outcomes of cancer patients, the Lox family has emerged as a potentially powerful clinical target. This review examines how lysyl oxidase family dysregulation in solid cancers contributes to disease progression and poor patient outcomes, as well as an evaluation of the preclinical landscape of LOX family targeting therapeutics. We also discuss the suitability of the LOX family as a diagnostic and/or prognostic marker in solid tumours.

5.
Biochem Soc Trans ; 47(6): 1661-1678, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31754702

RESUMO

The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/enzimologia , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Colágeno/metabolismo , Elastina/metabolismo , Matriz Extracelular/enzimologia , Matriz Extracelular/patologia , Fibrose , Humanos , Neoplasias/patologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...